Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
mSystems ; 9(1): e0105823, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38085042

RESUMO

Evaluating domestication signatures beyond model organisms is essential for a thorough understanding of the genotype-phenotype relationship in wild and human-related environments. Structural variations (SVs) can significantly impact phenotypes playing an important role in the physiological adaptation of species to different niches, including during domestication. A detailed characterization of the fitness consequences of these genomic rearrangements, however, is still limited in non-model systems, largely due to the paucity of direct comparisons between domesticated and wild isolates. Here, we used a combination of sequencing strategies to explore major genomic rearrangements in a Lachancea cidri yeast strain isolated from cider (CBS2950) and compared them to those in eight wild isolates from primary forests. Genomic analysis revealed dozens of SVs, including a large reciprocal translocation (~16 kb and 500 kb) present in the cider strain, but absent from all wild strains. Interestingly, the number of SVs was higher relative to single-nucleotide polymorphisms in the cider strain, suggesting a significant role in the strain's phenotypic variation. The set of SVs identified directly impacts dozens of genes and likely underpins the greater fermentation performance in the L. cidri CBS2950. In addition, the large reciprocal translocation affects a proline permease (PUT4) regulatory region, resulting in higher PUT4 transcript levels, which agrees with higher ethanol tolerance, improved cell growth when using proline, and higher amino acid consumption during fermentation. These results suggest that SVs are responsible for the rapid physiological adaptation of yeast to a human-related environment and demonstrate the key contribution of SVs in adaptive fermentative traits in non-model species.IMPORTANCEThe exploration of domestication signatures associated with human-related environments has predominantly focused on studies conducted on model organisms, such as Saccharomyces cerevisiae, overlooking the potential for comparisons across other non-Saccharomyces species. In our research, employing a combination of long- and short-read data, we found domestication signatures in Lachancea cidri, a non-model species recently isolated from fermentative environments in cider in France. The significance of our study lies in the identification of large array of major genomic rearrangements in a cider strain compared to wild isolates, which underly several fermentative traits. These domestication signatures result from structural variants, which are likely responsible for the phenotypic differences between strains, providing a rapid path of adaptation to human-related environments.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Humanos , Saccharomyces cerevisiae/genética , Domesticação , Saccharomycetales/genética , Bebidas Alcoólicas , Translocação Genética
2.
Yeast ; 41(1-2): 52-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146767

RESUMO

In this study, we describe Nakazawaea atacamensis f. a., sp. nov., a novel species obtained from Neltuma chilensis plant samples in Chile's hyperarid Atacama Desert. In total, three strains of N. atacamensis were obtained from independent N. chilensis samples (synonym Prosopis chilensis, Algarrobo). Two strains were obtained from bark samples, while the third strain was obtained from bark-exuded gum from another tree. The novel species was defined using molecular characteristics and subsequently characterized with respect to morphological, physiological, and biochemical properties. A neighbor-joining analysis using the sequences of the D1/D2 domains of the large subunit ribosomal RNA gene revealed that N. atacamensis clustered with Nakazawaea pomicola. The sequence of N. atacamensis differed from closely related species by 1.3%-5.2% in the D1/D2 domains. A phylogenomic analysis based on single-nucleotide polymorphism's data confirms that the novel species belongs to the genus Nakazawaea, where N. atacamensis clustered with N. peltata. Phenotypic comparisons demonstrated that N. atacamensis exhibited distinct carbon assimilation patterns compared to its related species. Genome sequencing of the strain ATA-11A-BT revealed a genome size of approximately 12.4 Mbp, similar to other Nakazawaea species, with 5116 protein-coding genes annotated using InterProScan. In addition, N. atacamensis exhibited the capacity to ferment synthetic wine must, representing a potential new yeast for mono or co-culture wine fermentations. This comprehensive study expands our understanding of the genus Nakazawaea and highlights the ecological and industrial potential of N. atacamensis in fermentation processes. The holotype of N. atacamensis sp. nov. is CBS 18375T . The Mycobank number is MB 849680.


Assuntos
Saccharomycetales , Vinho , Fermentação , Filogenia , Saccharomycetales/genética , Pichia/genética , Sequência de Bases , Análise de Sequência de DNA , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética
3.
mSystems ; 7(6): e0064022, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468850

RESUMO

The study of natural variation can untap novel alleles with immense value for biotechnological applications. Saccharomyces eubayanus Patagonian isolates exhibit differences in the diauxic shift between glucose and maltose, representing a suitable model to study their natural genetic variation for novel strains for brewing. However, little is known about the genetic variants and chromatin regulators responsible for these differences. Here, we show how genome-wide chromatin accessibility and gene expression differences underlie distinct diauxic shift profiles in S. eubayanus. We identified two strains with a rapid diauxic shift between glucose and maltose (CL467.1 and CBS12357) and one strain with a remarkably low fermentation efficiency and longer lag phase during diauxic shift (QC18). This is associated in the QC18 strain with lower transcriptional activity and chromatin accessibility of specific genes of maltose metabolism and higher expression levels of glucose transporters. These differences are governed by the HAP complex, which differentially regulates gene expression depending on the genetic background. We found in the QC18 strain a contrasting phenotype to those phenotypes described in S. cerevisiae, where hap4Δ, hap5Δ, and cin5Δ knockouts significantly improved the QC18 growth rate in the glucose-maltose shift. The most profound effects were found between CIN5 allelic variants, suggesting that Cin5p could strongly activate a repressor of the diauxic shift in the QC18 strain but not necessarily in the other strains. The differences between strains could originate from the tree host from which the strains were obtained, which might determine the sugar source preference and the brewing potential of the strain. IMPORTANCE The diauxic shift has been studied in budding yeast under laboratory conditions; however, few studies have addressed the diauxic shift between carbon sources under fermentative conditions. Here, we study the transcriptional and chromatin structure differences that explain the natural variation in fermentative capacity and efficiency during diauxic shift of natural isolates of S. eubayanus. Our results show how natural genetic variants in transcription factors impact sugar consumption preferences between strains. These variants have different effects depending on the genetic background, with a contrasting phenotype to those phenotypes previously described in S. cerevisiae. Our study shows how relatively simple genetic/molecular modifications/editing in the lab can facilitate the study of natural variations of microorganisms for the brewing industry.


Assuntos
Maltose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Maltose/metabolismo , Cerveja , Glucose , Cromatina
4.
Environ Microbiol ; 24(12): 5615-5629, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35769023

RESUMO

Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole-genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64-8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405-51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene-dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.


Assuntos
Variação Genética , Saccharomyces cerevisiae , Humanos , Haplótipos , Austrália , Filogenia
5.
Sci Rep ; 12(1): 5976, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396494

RESUMO

Since its identification, Saccharomyces eubayanus has been recognized as the missing parent of the lager hybrid, S. pastorianus. This wild yeast has never been isolated from fermentation environments, thus representing an interesting candidate for evolutionary, ecological and genetic studies. However, it is imperative to develop additional molecular genetics tools to ease manipulation and thus facilitate future studies. With this in mind, we generated a collection of stable haploid strains representative of three main lineages described in S. eubayanus (PB-1, PB-2 and PB-3), by deleting the HO gene using CRISPR-Cas9 and tetrad micromanipulation. Phenotypic characterization under different conditions demonstrated that the haploid derivates were extremely similar to their parental strains. Genomic analysis in three strains highlighted a likely low frequency of off-targets, and sequencing of a single tetrad evidenced no structural variants in any of the haploid spores. Finally, we demonstrate the utilization of the haploid set by challenging the strains under mass-mating conditions. In this way, we found that S. eubayanus under liquid conditions has a preference to remain in a haploid state, unlike S. cerevisiae that mates rapidly. This haploid resource is a novel set of strains for future yeast molecular genetics studies.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Cerveja , Fermentação , Haploidia , Saccharomyces/genética , Saccharomyces cerevisiae/genética
6.
Yeast ; 39(1-2): 4-24, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35146791

RESUMO

Yeasts are ubiquitous in temperate forests. While this broad habitat is well-defined, the yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are less understood. Yeasts are present on nearly all sampled substrates in temperate forests worldwide. They associate with soils, macroorganisms, and other habitats and no doubt contribute to broader ecosystem-wide processes. Researchers have gathered information leading to hypotheses about yeasts' niches and their life cycles based on physiological observations in the laboratory as well as genomic analyses, but the challenge remains to test these hypotheses in the forests themselves. Here, we summarize the habitat and global patterns of yeast diversity, give some information on a handful of well-studied temperate forest yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate forest yeasts' contributions to biotechnology. We close with a summary of the many future directions and outstanding questions facing researchers in temperate forest yeast ecology. Yeasts present an exciting opportunity to better understand the hidden world of microbial ecology in this threatened and global habitat.


Assuntos
Ecossistema , Árvores , Biodiversidade , Florestas , Leveduras/genética
7.
Insect Biochem Mol Biol ; 143: 103742, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35183733

RESUMO

The English grain aphid, Sitobion avenae, is a cosmopolitan pest that feeds on cereals, provoking substantial yield losses by injuring plant tissue and by vectoring plant viruses. Here we report a highly complete, de novo draft genome of the grain aphid using long-read sequencing. We generated an assembly of 2740 contigs with a N50 of 450 kb. We compared this draft genome with that of other aphid species, inspecting gene family evolution, genome-wide positive selection, and searched for horizontal gene transfer events. In addition, we described a recent copy number variant expansion of gene families involving aconitase, ABC transporter, and esterase genes that could be associated with resistance to insecticides and plant chemical defenses. This S. avenae genome obtained from a predominant invasive genotype can provide a framework for studying the spatial-temporal success of these clonal lineages in invaded agroecosystems.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Sequência de Bases , Genoma , Genótipo
8.
Phys Chem Chem Phys ; 24(4): 2004-2014, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35022639

RESUMO

Helium clusters around the recently experimentally observed sulphur hexafluoride SF6+ and sulphur pentafluoride SF5+ ions are investigated using a combined experimental and theoretical effort. Mass spectrometry ion yields are obtained and the energetics and structure of the corresponding HeN-SF6+ and HeN-SF5+ clusters are analyzed using path integral molecular dynamics calculations as a function of N, the number of He atoms, employing a new intermolecular potential describing the interaction between the dopant and the surrounding helium. The new force field is optimized on benchmark potential energy ab initio calculations and represented by improved Lennard-Jonnes analytical expressions. This procedure improves the previous potentials employed in similar simulations for neutral SF6 attached to helium nanodroplets. The theoretical analysis explains the characteristic features observed in the experimental ion yields which suggest the existence of stable configurations at specific sizes.

9.
Yeast ; 39(1-2): 128-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406697

RESUMO

The quest for new wild yeasts has increasingly gained attention because of their potential ability to provide unique organoleptic characters to fermented beverages. In this sense, Patagonia offers a wide diversity of ethanol-tolerant yeasts and stands out as a bioprospecting alternative. This study characterized the genetic and phenotypic diversity of yeast isolates obtained from Central Chilean Patagonia and analyzed their fermentation potential under different fermentative conditions. We recovered 125 colonies from Nothofagus spp. bark samples belonging to five yeast species: Saccharomyces eubayanus, Saccharomyces uvarum, Lachancea cidri, Kregervanrija delftensis, and Hanseniaspora valbyensis. High-throughput microcultivation assays demonstrated the extensive phenotypic diversity among Patagonian isolates, where Saccharomyces spp and L. cidri isolates exhibited the most outstanding fitness scores across the conditions tested. Fermentation performance assays under wine, mead, and beer conditions demonstrated the specific potential of the different species for each particular beverage. Saccharomyces spp. were the only isolates able to ferment beer wort. Interestingly, we found that L. cidri is a novel candidate species to ferment wine and mead, exceeding the fermentation capacity of a commercial strain. Unlike commercial strains, we found that L. cidri does not require nutritional supplements for efficient mead fermentation. In addition, L. cidri produces succinic and acetic acids, providing a distinct profile to the final fermented product. This work demonstrates the importance of bioprospecting efforts in Patagonia to isolate novel wild yeast strains with extraordinary biotechnological potential for the fermentation industry.


Assuntos
Etanol , Vinho , Cerveja , Fermentação , Vinho/análise , Leveduras
10.
Molecules ; 26(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34641327

RESUMO

We present path integral molecular dynamics (PIMD) calculations of an electron transfer from a heliophobic Cs2 dimer in its (3Σu) state, located on the surface of a He droplet, to a heliophilic, fully immersed C60 molecule. Supported by electron ionization mass spectroscopy measurements (Renzler et al., J. Chem. Phys.2016, 145, 181101), this spatially quenched reaction was characterized as a harpoon-type or long-range electron transfer in a previous high-level ab initio study (de Lara-Castells et al., J. Phys. Chem. Lett.2017, 8, 4284). To go beyond the static approach, classical and quantum PIMD simulations are performed at 2 K, slightly below the critical temperature for helium superfluidity (2.172 K). Calculations are executed in the NVT ensemble as well as the NVE ensemble to provide insights into real-time dynamics. A droplet size of 2090 atoms is assumed to study the impact of spatial hindrance on reactivity. By changing the number of beads in the PIMD simulations, the impact of quantization can be studied in greater detail and without an implicit assumption of superfluidity. We find that the reaction probability increases with higher levels of quantization. Our findings confirm earlier, static predictions of a rotational motion of the Cs2 dimer upon reacting with the fullerene, involving a substantial displacement of helium. However, it also raises the new question of whether the interacting species are driven out-of-equilibrium after impurity uptake, since reactivity is strongly quenched if a full thermal equilibration is assumed. More generally, our work points towards a novel mechanism for long-range electron transfer through an interplay between nuclear quantum delocalization within the confining medium and delocalized electronic dispersion forces acting on the two reactants.

11.
Microorganisms ; 8(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443420

RESUMO

The recent isolation of the yeast Saccharomyces eubayanus has opened new avenues in the brewing industry. Recent studies characterized the production of volatile compounds in a handful set of isolates, utilizing a limited set of internal standards, representing insufficient evidence into the ability of the species to produce new and diverse aromas in beer. Using Headspace solid-phase microextraction followed by gas chromatography-mass spectrometry (HS-SPME-GC-MS), we characterized for the first time the production of volatile compounds in 10 wild strains under fermentative brewing conditions and compared them to a commercial lager yeast. S. eubayanus produces a higher number of volatile compounds compared to lager yeast, including acetate and ethyl esters, together with higher alcohols and phenols. Many of the compounds identified in S. eubayanus are related to fruit and floral flavors, which were absent in the commercial lager yeast ferment. Interestingly, we found a significant strain × temperature interaction, in terms of the profiles of volatile compounds, where some strains produced significantly greater levels of esters and higher alcohols. In contrast, other isolates preferentially yielded phenols, depending on the fermentation temperature. This work demonstrates the profound fermentation product differences between different S. eubayanus strains, highlighting the enormous potential of this yeast to produce new styles of lager beers.

12.
J Phys Chem A ; 123(36): 7814-7821, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31442041

RESUMO

We present a theoretical study on the potential energy surface and bound states of He-A2+ complexes, where A is one of the alkali Li or Na atoms. The intermolecular interactions were systematically investigated by high-level ab initio electronic structure computations, and the corresponding raw data were then employed to reproduce accurate analytical expressions of the potential surfaces. In turn, we used these potentials to evaluate bound configurations of the trimers from nuclear quantum calculations and to extract information on the effect of orientational anisotropy of the forces and the interplay between repulsive and attractive interaction within the potential surfaces. The spatial features of the bound states are analyzed and discussed in detail. We found that both systems are going under large amplitude stretching and bending motions with high zero-point energies. Despite the large differences in the potential well-depths, the correct treatment of nuclear quantum effects provides insights on the effect of different strength of the ionic interaction on the spectral structure of such cationic alkali van der Waals complexes, related to the mobility of ions and the formation of cold-molecules in He-controlled environments.

13.
J Chem Phys ; 150(15): 154304, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005067

RESUMO

Solvation of Cs+ ions inside helium droplets has been investigated both experimentally and theoretically. On the one hand, mass spectra of doped helium clusters ionized with a crossed electron beam, HeNCs+, have been recorded for sizes up to N = 60. The analysis of the ratio between the observed peaks for each size N reveals evidences of the closure of the first solvation shell when 17 He atoms surround the alkali ion. On the other hand, we have obtained energies and geometrical structures of the title clusters by means of basin-hopping, diffusion Monte Carlo (DMC), and path integral Monte Carlo (PIMC) methods. The analytical He-Cs+ interaction potential employed in our calculations is represented by the improved Lennard-Jones expression optimized on high level ab initio energies. The weakness of the existing interaction between helium and Cs+ in comparison with some other alkali ions such as Li+ is found to play a crucial role. Our theoretical findings confirm that the first solvation layer is completed at N = 17 and both evaporation and second difference energies obtained with the PIMC calculation seem to reproduce a feature observed at N = 12 for the experimental ion abundance. The analysis of the DMC probability distributions reveals the important contribution from the icosahedral structure to the overall configuration for He12Cs+.

14.
BMC Microbiol ; 18(1): 66, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976143

RESUMO

BACKGROUND: Microorganisms have evolved a number of mechanisms to thrive in cold environments, including the production of antifreeze proteins, high levels of polyunsaturated fatty acids, and ergosterol. In this work, several yeast species isolated from Antarctica were analyzed with respect to their freeze-thaw tolerance and production of the three abovementioned compounds, which may also have economic importance. RESULTS: The freeze-thaw tolerance of yeasts was widely variable among species, and a clear correlation with the production of any of the abovementioned compounds was not observed. Antifreeze proteins that were partially purified from Goffeauzyma gastrica maintained their antifreeze activities after several freeze-thaw cycles. A relatively high volumetric production of ergosterol was observed in the yeasts Vishniacozyma victoriae, G. gastrica and Leucosporidium creatinivorum, i.e., 19, 19 and 16 mg l- 1, respectively. In addition, a high percentage of linoleic acid with respect to total fatty acids was observed in V. victoriae (10%), Wickerhamomyces anomalus (12%) and G. gastrica (13%), and a high percentage of alpha linoleic acid was observed in L. creatinivorum (3.3%). CONCLUSIONS: Given these results, the abovementioned yeasts are good candidates to be evaluated for use in the production of antifreeze proteins, fatty acids, and ergosterol at the industrial scale.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas Anticongelantes/metabolismo , Ergosterol/metabolismo , Ácidos Graxos/metabolismo , Fungos/fisiologia , Regiões Antárticas , Microbiologia Ambiental , Ácidos Graxos Insaturados/metabolismo , Fungos/metabolismo
15.
J Therm Biol ; 74: 133-139, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29801618

RESUMO

Two strategies have been described for cold tolerance in arthropods: (1) freeze-tolerant organisms, which can survive the formation of ice crystals and (2) freeze-avoidant organisms, which prevent the ice crystal formation by super cooling their internal fluids. We studied two arthropods from the Andean Range in central Chile (2400 m a.s.l.), the stick insect Agathemera crassa commonly named as "Chinchemolle", and the tarantula spider Euathlus condorito commonly named as "Araña pollito", in order to evaluate how they respond to low temperatures at the physiological and molecular levels. We sampled the soil temperature during one year to track the temperature changes that these organisms must overcome. We found minimum temperatures around -6 °C in autumn, while the temperature were stable at 0 °C in winter due to the snow. The average field-cooling rate was 0.01 ±â€¯0.006 °C min-1. For both arthropods we determined the super cooling point (SCP) at a cooling rate of 1 °C min-1 and its subsequent survival, finding that A. crassa is a freezing tolerant organism with a SCP of -3.8 ±â€¯1.8 °C and 100% survival, while E. condorito is a freezing avoidant organism with a SCP of -3.0 ±â€¯1.3 °C and 0% survival. The SCP and survival were not affected by the season in which individuals were collected, the SCP was significantly affected by the cooling rate of the experiment. Both species had low molecular weight cryoprotective in their hemolymph that could explain their cold-tolerance behavior. Glucose, glycerol, and trehalose were found in A. crassa's hemolymph, only glucose and glycerol were found in E. condorito's. We analyzed the hemolymph proteins and found no seasonal differences in composition for either species and also we detected protein antifreeze activity in the hemolymph from both arthropods.


Assuntos
Neópteros/fisiologia , Aranhas/fisiologia , Aclimatação , Animais , Proteínas Anticongelantes/metabolismo , Chile , Temperatura Baixa , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Solo
16.
Phys Chem Chem Phys ; 19(38): 26358-26368, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28937173

RESUMO

Benchmark interaction energies between coronene, C24H12, and molecular hydrogen, H2, have been computed by means of high level electronic structure calculations. Binding energies, equilibrium distances and strengths of the long range attraction, evaluated for the basic configurations of the H2-C24H12 complex, indicate that the system is not too affected by the relative orientations of the diatom, suggesting that its behavior can be approximated to that of a pseudoatom. The obtained energy profiles have confirmed the noncovalent nature of the bonding and serve to tune-up the parameters of a new force field based on the atom-bond approach which correctly describes the main features of the H2-coronene interaction. The structure and binding energies of (para-H2)N-coronene clusters have been investigated with an additive model for the above mentioned interactions and exploiting basin-hopping and path integral Monte Carlo calculations for N = 1-16 at T = 2 K. Differences with respect to the prototypical (rare gas)N-coronene aggregates have been discussed.

17.
Acta sci., Biol. sci ; 39(3): 397-399, July-Sept. 2017. ilus
Artigo em Inglês | LILACS | ID: biblio-859961

RESUMO

Ticks are parasites of wild animals, affecting diverse and several species. The present study reveals the presence of Amblyomma aureolatum parasitizing the margay cat (Leopardus wiedii) in the city of Uruguaiana. This is the first report of the presence of this tick specie in this city, situated in west (29° 45' 18" S 57° 05' 16" W) of the state of Rio Grande do Sul, Brazil, indicating a wide host diversity.


Carrapatos podem ser parasitos de animais selvagens, afetando diversas espécies. O presente trabalho relata a presença de Amblyomma aureolatum parasitando o gato-maracajá (Leopardus wiedii) na região de Uruguaiana, esse é o primeiro relato da presença desta espécie de ixodídeo nesta cidade (29° 45' 18" S 57° 05' 16" W), situada na região oeste do estado do Rio Grande do Sul, Brasil, indicando que diversos hospedeiros silvestres podem ser acometidos pelo parasito.


Assuntos
Animais Selvagens , Ixodidae , Carrapatos
18.
J Chem Phys ; 146(3): 034302, 2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109229

RESUMO

Clusters formed by the combination of rare gas (RG) atoms of He, Ne, Ar, and Kr on coronene have been investigated by means of a basin-hopping algorithm and path integral Monte Carlo calculations at T = 2 K. Energies and geometries have been obtained and the role played by the specific RG-RG and RG-coronene interactions on the final results is analysed in detail. Signatures of diffuse behavior of the He atoms on the surface of the coronene are in contrast with the localization of the heavier species, Ar and Kr. The observed coexistence of various geometries for Ne suggests the motion of the RG atoms on the multi-well potential energy surface landscape offered by the coronene. Therefore, the investigation of different clusters enables a comparative analysis of localized versus non-localized features. Mixed Ar-He-coronene clusters have also been considered and the competition of the RG atoms to occupy the docking sites on the molecule is discussed. All the obtained information is crucial to assess the behavior of coronene, a prototypical polycyclic aromatic hydrocarbon clustering with RG atoms at a temperature close to that of interstellar medium, which arises from the critical balance of the interactions involved.

19.
J Phys Chem A ; 120(27): 5370-9, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27058172

RESUMO

Feynman-Hibbs (FH) effective potentials constitute an appealing approach for investigations of many-body systems at thermal equilibrium since they allow us to easily include quantum corrections within standard classical simulations. In this work we apply the FH formulation to the study of NeN-coronene clusters (N = 1-4, 14) in the 2-14 K temperature range. Quadratic (FH2) and quartic (FH4) contributions to the effective potentials are built upon Ne-Ne and Ne-coronene analytical potentials. In particular, a new corrected expression for the FH4 effective potential is reported. FH2 and FH4 cluster energies and structures-obtained from energy optimization through a basin-hopping algorithm as well as classical Monte Carlo simulations-are reported and compared with reference path integral Monte Carlo calculations. For temperatures T > 4 K, both FH2 and FH4 potentials are able to correct the purely classical calculations in a consistent way. However, the FH approach fails at lower temperatures, especially the quartic correction. It is thus crucial to assess the range of applicability of this formulation and, in particular, to apply the FH4 potentials with great caution. A simple model of N isotropic harmonic oscillators allows us to propose a means of estimating the cutoff temperature for the validity of the method, which is found to increase with the number of atoms adsorbed on the coronene molecule.

20.
BMC Microbiol ; 16: 21, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26895625

RESUMO

BACKGROUND: Amylases and cellulases have great potential for application in industries such as food, detergent, laundry, textile, baking and biofuels. A common requirement in these fields is to reduce the temperatures of the processes, leading to a continuous search for microorganisms that secrete cold-active amylases and cellulases. Psychrotolerant yeasts are good candidates because they inhabit cold-environments. In this work, we analyzed the ability of yeasts isolated from the Antarctic region to grow on starch or carboxymethylcellulose, and their potential extracellular amylases and cellulases. RESULT: All tested yeasts were able to grow with soluble starch or carboxymethylcellulose as the sole carbon source; however, not all of them produced ethanol by fermentation of these carbon sources. For the majority of the yeast species, the extracellular amylase or cellulase activity was higher when cultured in medium supplemented with glucose rather than with soluble starch or carboxymethylcellulose. Additionally, higher amylase activities were observed when tested at pH 5.4 and 6.2, and at 30-37 °C, except for Rhodotorula glacialis that showed elevated activity at 10-22 °C. In general, cellulase activity was high until pH 6.2 and between 22-37 °C, while the sample from Mrakia blollopis showed high activity at 4-22 °C. Peptide mass fingerprinting analysis of a potential amylase from Tetracladium sp. of about 70 kDa, showed several peptides with positive matches with glucoamylases from other fungi. CONCLUSIONS: Almost all yeast species showed extracellular amylase or cellulase activity, and an inducing effect by the respective substrate was observed in a minor number of yeasts. These enzymatic activities were higher at 30 °C in most yeast, with highest amylase and cellulase activity in Tetracladium sp. and M. gelida, respectively. However, Rh. glacialis and M. blollopis displayed high amylase or cellulase activity, respectively, under 22 °C. In this sense, these yeasts are interesting candidates for industrial processes that require lower temperatures.


Assuntos
Amilases/metabolismo , Celulases/metabolismo , Proteínas Fúngicas/metabolismo , Leveduras/enzimologia , Amilases/química , Amilases/genética , Regiões Antárticas , Celulases/química , Celulases/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Temperatura , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...